
All slides copyright Philip Japikse http://www.skimedic.com

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

Philip Japikse (@skimedic)

skimedic@outlook.com

CTO, Author, Teacher

Microsoft MVP, ASPInsider,

PST, PSM II, PSD, PSPO, PSK

SOLID DESIGN PATTERNS FOR MERE MORTALS

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

All slides copyright Philip Japikse http://www.skimedic.com

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

CTO/Chief Architect, Pintas & Mullins

Author: Apress.com (http://bit.ly/apressbooks)

Professional Scrum Trainer (PSF, PSD)

Speaker: http://www.skimedic.com/blog/page/Abstracts.aspx

Microsoft MVP, ASPInsider, PST, PSM II, PSD

Founder, Agile Conferences, Inc.

http://www.cincydeliver.org

President, Cincinnati .NET User’s Group

Phil.About()

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

All slides copyright Philip Japikse http://www.skimedic.com

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

A LOOK AT SOLID

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

All slides copyright Philip Japikse http://www.skimedic.com

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

Do one thing and do it well!

SINGLE RESPONSIBILITY PRINCIPLE

http://joshlinkner.com/images/2012/05/SAN.jpg

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns
http://joshlinkner.com/images/2012/05/SAN.jpg

All slides copyright Philip Japikse http://www.skimedic.com

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

Be Open for Extension,

Closed for Modification

OPEN CLOSED PRINCIPLE

http://www.wellgolly.com/images/WWTT_house.jpg

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

All slides copyright Philip Japikse http://www.skimedic.com

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

Derived Classes Can Stand In for

Base Classes

LISKOV SUBSTITUTION PRINCIPLE

http://beerimages.com/wp-content/uploads/2011/03/beer-collection.jpg

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

All slides copyright Philip Japikse http://www.skimedic.com

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

Make Interfaces

Fine Grained and

Client Specific

INTERFACE SEGREGATION PRINCIPLE

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

All slides copyright Philip Japikse http://www.skimedic.com

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

Depend On Abstractions,

Not Concrete Implementations

DEPENDENCY INVERSION

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

All slides copyright Philip Japikse http://www.skimedic.com

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

ADDITIONAL CONSIDERATIONS

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

All slides copyright Philip Japikse http://www.skimedic.com

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

Clip-board Inheritance is an anti-pattern!

DON’T REPEAT YOURSELF (DRY)

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

All slides copyright Philip Japikse http://www.skimedic.com

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

Clean up after yourself

Clean up after others

THE BOY SCOUT PRINCIPLE

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

All slides copyright Philip Japikse http://www.skimedic.com

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

You Ain’t Gonna Need It

YAGNI

http://www.k-photography.info/srvgdata-gold-plated-toilets.asp

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

All slides copyright Philip Japikse http://www.skimedic.com

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

It’s time to unmask the computing

community as a Secret Society for the

Creation and Preservation of Artificial

Complexity – Edsger Dijkstra

SEPARATION OF CONCERNS

https://sf.curbed.com/2017/3/10/14889950/kitchen-bathroom-sf-combined-toilet

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

All slides copyright Philip Japikse http://www.skimedic.com

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

FIX THE WINDOWS

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

All slides copyright Philip Japikse http://www.skimedic.com

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

DESIGN PATTERNS

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

All slides copyright Philip Japikse http://www.skimedic.com

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

MOTIVATION FOR DESIGN PATTERNS

“The goal is not to bend developers to the will of some specific

patterns, but to get them to think about their work and what they are

doing”

--Phil Haack

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

All slides copyright Philip Japikse http://www.skimedic.com

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

WHAT ARE DESIGN PATTERNS?

General Reusable Solutions To A Common Problem

Conceptual

Defined by Purpose and Structure

Method of Communication

Support SOLID development

NOT CODE!

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

All slides copyright Philip Japikse http://www.skimedic.com

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

TYPES OF DESIGN PATTERNS

Creational

Deal with instantiation of objects (Singleton, Factories, Prototype)

Structural

Deal with Composition and Relations (Adapter, Façade, Decorator)

Behavioral

Deal with responsibilities and communication between objects

(Command, Strategy, Observer, Pub-Sub, Memento, Template Method)

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

All slides copyright Philip Japikse http://www.skimedic.com

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

CREATIONAL DESIGN PATTERNS

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

All slides copyright Philip Japikse http://www.skimedic.com

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

CREATIONAL

Singleton

Ensures class has only one instance with a single access point

Simple Factory (Not a “true” pattern)

Encapsulates object creation in one place

Factory Method

Uses methods to create objects without specifying the exact class

Abstract Factory

Encapsulates a group of individual factories with a common theme
without specifying their concrete class

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

All slides copyright Philip Japikse http://www.skimedic.com

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

THE SINGLETON PATTERN

The singleton pattern is a software design pattern that restricts the

instantiation of a class to one instance and provides global access to that

instance.

Commonly used to implement many other patterns:

Factories (abstract and simple), façade, state, builder, and prototype

Many DI frameworks provide singleton support

You need to understand how the DI f/w works to prevent issues

https://en.wikipedia.org/wiki/Singleton_pattern

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

All slides copyright Philip Japikse http://www.skimedic.com

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

THE SIMPLE FACTORY PATTERN

Not a “true” pattern

Encapsulates object creation in one place

Should be the only part of the application that refers to concrete classes

Reduces duplicate code by enforcing DRY

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

All slides copyright Philip Japikse http://www.skimedic.com

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

THE FACTORY METHOD PATTERN

The factory method pattern defines an interface for creating an object, but

lets derived classes decide what to instantiate.

 Derived classes can employ a simple factory to instantiate the class

specific types

https://en.wikipedia.org/wiki/Factory_method_pattern

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

All slides copyright Philip Japikse http://www.skimedic.com

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

THE ABSTRACT FACTORY PATTERN

The abstract factory pattern provides a way to encapsulate a group of

individual factories that have a common theme without specifying their

concrete classes.

This pattern separates the details of implementation of a set of objects from

their general usage and relies on object composition, as object creation is

implemented in methods exposed in the factory interface.

https://en.wikipedia.org/wiki/Abstract_factory_pattern

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

All slides copyright Philip Japikse http://www.skimedic.com

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

STRUCTURAL DESIGN PATTERNS

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

All slides copyright Philip Japikse http://www.skimedic.com

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

STRUCTURAL

Adapter

Converts the interface of a class into another interface the client expects

Façade

Provides a simplified interface to a larger body of code

Decorator

Attaches additional responsibilities to an object at runtime without

effecting other objects of the same class

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

All slides copyright Philip Japikse http://www.skimedic.com

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

THE ADAPTER PATTERN

The adapter pattern allows the interface of an existing class to be used as

another interface. It is often used to make existing classes work with others

without modifying code.

https://en.wikipedia.org/wiki/Facade_pattern

https://en.wikipedia.org/wiki/Adapter_pattern

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

All slides copyright Philip Japikse http://www.skimedic.com

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

THE FAÇADE PATTERN

A facade is an object that provides a simplified interface to a larger body of

code, such as a class library. A facade can:

Make a software library easier to use, understand, and test, since the

facade has convenient methods for common tasks,

Reduce dependencies of outside code on the inner workings of a library

Wrap a poorly designed collection of APIs with a single well-designed API.

https://en.wikipedia.org/wiki/Facade_pattern

https://en.wikipedia.org/wiki/Adapter_pattern

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

All slides copyright Philip Japikse http://www.skimedic.com

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

THE DECORATOR PATTERN

The decorator pattern that allows behavior to be added to an individual

object, either statically or dynamically, without affecting the behavior of other

objects from the same class.

Provides an alternative to subclassing for extending functionality.

Supports the Single Responsibility Principle, as it allows functionality to be

divided between classes with unique areas of concern.

https://en.wikipedia.org/wiki/Decorator_pattern

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

All slides copyright Philip Japikse http://www.skimedic.com

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

BEHAVIORAL DESIGN PATTERNS

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

All slides copyright Philip Japikse http://www.skimedic.com

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

BEHAVIORAL

Command

Encapsulates a request as an object

Strategy

Encapsulates an algorithm inside a class

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

All slides copyright Philip Japikse http://www.skimedic.com

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

THE COMMAND PATTERN

The command pattern is a behavioral design pattern in which an object is

used to encapsulate all information needed to perform an action or trigger an

event at a later time.

Can optionally add Undo

Tracked by either the command or the controller

Used in conjunction with many other patterns:

Factory method, Template method

https://en.wikipedia.org/wiki/Command_pattern

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

All slides copyright Philip Japikse http://www.skimedic.com

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

THE STRATEGY PATTERN

The strategy pattern (also known as the policy pattern) is a behavioral software design pattern
that enables an algorithm's behavior to be selected at runtime. The strategy pattern:

defines a family of algorithms,

encapsulates each algorithm, and

makes the algorithms interchangeable within that family.

Promotes the Open/Closed principle by using Composition over Inheritance

Examples:

Sorting (with custom comparer)

Log4Net Fallback Appender

https://en.wikipedia.org/wiki/Strategy_pattern

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

All slides copyright Philip Japikse http://www.skimedic.com

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

RESOURCES

“Design Patterns: Elements of Reusable Object Oriented Design”

Eric Gamma, Richard Helm, Ralph Johnson, John Vlissides

“Head First Design Patterns”

Freeman, Robson, Bates, Sierra

Eight part series with Robert Green on Visual Studio Toolbox

https://channel9.msdn.com/Shows/Visual-Studio-Toolbox/Design-

Patterns-CommandMemento (first of the series)

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

All slides copyright Philip Japikse http://www.skimedic.com

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

skimedic@outlook.com

www.skimedic.com/blog

www.twitter.com/skimedic

http://bit.ly/apressbooks

Thank You!

Contact Me

Questions?

Contact Me

https://github.com/skimedic/presentations/tree/main/Patterns/6.0/DesignPatterns

	Slide 1: SOLID Design Patterns For Mere Mortals
	Slide 2
	Slide 4: A Look at SOLID
	Slide 5: Single Responsibility Principle
	Slide 6: Open Closed Principle
	Slide 7: Liskov Substitution Principle
	Slide 8: Interface Segregation Principle
	Slide 9: Dependency Inversion
	Slide 10: Additional Considerations
	Slide 11: Don’t Repeat Yourself (DRY)
	Slide 12: The Boy Scout Principle
	Slide 13: YAGNI
	Slide 14: Separation Of Concerns
	Slide 15: Fix the Windows
	Slide 16: Design Patterns
	Slide 17: Motivation for Design Patterns
	Slide 18: What are Design Patterns?
	Slide 19: Types of Design Patterns
	Slide 20: Creational Design Patterns
	Slide 22: Creational
	Slide 23: The Singleton Pattern
	Slide 24: The Simple Factory Pattern
	Slide 25: The Factory Method Pattern
	Slide 26: The Abstract Factory Pattern
	Slide 28: Structural Design Patterns
	Slide 29: Structural
	Slide 30: The Adapter Pattern
	Slide 31: The Façade Pattern
	Slide 32: the Decorator Pattern
	Slide 33: Behavioral Design Patterns
	Slide 35: Behavioral
	Slide 36: The Command Pattern
	Slide 37: The Strategy Pattern
	Slide 43: Resources
	Slide 45

