
All slides copyright Philip Japikse http://www.skimedic.com

Philip Japikse (@skimedic)

skimedic@outlook.com

www.skimedic.com/blog

Microsoft MVP, ASPInsider, MCSD, MCDBA, CSM, PSM II, PSD

Consultant, Teacher, Writer

DESIGN PATTERNS FOR MERE MORTALS

All slides copyright Philip Japikse http://www.skimedic.com

➢Director of Consulting/Chief Architect

➢Author: Apress.com (http://bit.ly/apressbooks)

➢Speaker: http://www.skimedic.com/blog/page/Abstracts.aspx

➢Microsoft MVP, ASPInsider, MCSD, MCDBA, CSM, PSM II, PSD

➢Founder, Agile Conferences, Inc.

➢http://www.cincydeliver.org

➢President, Cincinnati .NET User’s Group

Phil.About()

All slides copyright Philip Japikse http://www.skimedic.com

“The goal is not to bend developers to the will of some

specific patterns, but to get them to think about their work

and what they are doing”

--Phil Haack

All slides copyright Philip Japikse http://www.skimedic.com

WHAT ARE DESIGN PATTERNS?

➢General Reusable Solutions To A Common Problem

➢Conceptual

➢Defined by Purpose and Structure

➢Method of Communication

➢Support SOLID development

➢NOT CODE!

All slides copyright Philip Japikse http://www.skimedic.com

TYPES OF DESIGN PATTERNS

➢Creational

➢Deal with instantiation of objects (Singleton, Factories)

➢Structural

➢Deal with Composition and Relations (Adapter, Decorator, Façade)

➢Behavioral

➢Deal with responsibilities and communication between objects (Command,

Strategy)

All slides copyright Philip Japikse http://www.skimedic.com

BEHAVIORAL

All slides copyright Philip Japikse http://www.skimedic.com

THE STRATEGY PATTERN

➢The strategy pattern (also known as the policy pattern) is a behavioral software design pattern
that enables an algorithm's behavior to be selected at runtime. The strategy pattern:

➢defines a family of algorithms,

➢encapsulates each algorithm, and

➢makes the algorithms interchangeable within that family.

➢Promotes the Open/Closed principle by using Composition over Inheritance

➢Examples:

➢Sorting (with custom comparer)

➢Log4Net Fallback Appender

https://en.wikipedia.org/wiki/Strategy_pattern

All slides copyright Philip Japikse http://www.skimedic.com

THE OBSERVER PATTERN

➢The observer pattern is a pattern in which an object, called the subject,

maintains a list of its dependents, called observers, and notifies them

automatically of any state changes, usually by calling one of their methods.

➢Can cause memory leaks due to strong references

➢This is mitigated with weak references

https://en.wikipedia.org/wiki/Observer_pattern

All slides copyright Philip Japikse http://www.skimedic.com

THE PUBLISH-SUBSCRIBE PATTERN

➢In software architecture, publish–subscribe is a messaging pattern where

senders of messages, called publishers, do not program the messages to be

sent directly to specific receivers, called subscribers, but instead characterize

published messages into classes without knowledge of which subscribers, if

any, there may be.

➢Similarly, subscribers express interest in one or more classes and only

receive messages that are of interest, without knowledge of which publishers,

if any, there are.

https://en.wikipedia.org/wiki/Publish–subscribe_pattern

All slides copyright Philip Japikse http://www.skimedic.com

➢Sender and recipients unknown to

each other

➢Send once, every subject receives.

➢Intermediary handles filtering and

routing

➢The recipient knows the sender

➢The sender knows the recipient

➢Send and receive one at a time

➢Direct communication

OBSERVER VS PUB-SUB

Observer Pub-Sub

All slides copyright Philip Japikse http://www.skimedic.com

THE COMMAND PATTERN

➢The command pattern is a behavioral design pattern in which an object is

used to encapsulate all information needed to perform an action or trigger an

event at a later time.

➢Can optionally add Undo

➢Tracked by either the command or the controller

➢Used in conjunction with many other patterns:

➢Factory method, Template method

https://en.wikipedia.org/wiki/Command_pattern

All slides copyright Philip Japikse http://www.skimedic.com

THE MEMENTO PATTERN

➢The memento pattern provides the ability to restore an object to its previous state

(undo via rollback).

➢The memento pattern is implemented with three objects: the originator, a caretaker

and a memento.

➢The originator is some object that has an internal state.

➢The caretaker is going to do something to the originator, but wants to be able to

undo the change. It asks for a memento object.

➢Then it does whatever operation (or sequence of operations) it is going to do.

➢To roll back to the state before the operations, it returns the memento object to

the originator.

https://en.wikipedia.org/wiki/Memento_pattern

All slides copyright Philip Japikse http://www.skimedic.com

THE TEMPLATE METHOD PATTERN

➢The template method pattern defines the program skeleton of an algorithm

in an operation, deferring some steps to subclasses.

➢It lets one redefine certain steps of an algorithm without changing the

algorithm's structure.

➢In the template method, one or more algorithm steps can be overridden by

subclasses to allow differing behaviors while ensuring that the overarching

algorithm is still followed.

https://en.wikipedia.org/wiki/Template_method_pattern

All slides copyright Philip Japikse http://www.skimedic.com

CREATIONAL

All slides copyright Philip Japikse http://www.skimedic.com

THE SINGLETON PATTERN

➢The singleton pattern is a software design pattern that restricts the

instantiation of a class to one instance and provides global access to that

instance.

➢Commonly used to implement many other patterns:

➢Factories (abstract and simple), façade, state, builder, and prototype

➢Many DI frameworks provide singleton support

➢You need to understand how the DI f/w works to prevent issues

https://en.wikipedia.org/wiki/Singleton_pattern

All slides copyright Philip Japikse http://www.skimedic.com

THE SIMPLE FACTORY PATTERN

➢Not a “true” pattern

➢Encapsulates object creation in one place

➢Should be the only part of the application that refers to concrete classes

➢Reduces duplicate code by enforcing DRY

All slides copyright Philip Japikse http://www.skimedic.com

THE FACTORY METHOD PATTERN

➢The factory method pattern uses factory methods to deal with the problem of

creating objects without having to specify the exact class of the object that will

be created.

➢This is done by creating objects by calling a factory method—either specified

in an interface and implemented by child classes, or implemented in a base

class and optionally overridden by derived classes—rather than by calling a

constructor.

https://en.wikipedia.org/wiki/Factory_method_pattern

All slides copyright Philip Japikse http://www.skimedic.com

THE ABSTRACT FACTORY PATTERN

➢The abstract factory pattern provides a way to encapsulate a group of

individual factories that have a common theme without specifying their

concrete classes.

➢In normal usage, the client software creates a concrete implementation of the

abstract factory and then uses the generic interface of the factory to create

the concrete objects that are part of the theme.

➢This pattern separates the details of implementation of a set of objects from

their general usage and relies on object composition, as object creation is

implemented in methods exposed in the factory interface.

https://en.wikipedia.org/wiki/Abstract_factory_pattern

All slides copyright Philip Japikse http://www.skimedic.com

THE PROTOTYPE PATTERN

➢The prototype pattern is used when the type of objects to create is

determined by a prototypical instance, which is cloned to produce new

objects. This pattern is used to:

➢avoid subclasses of an object creator in the client application, like the

abstract factory pattern does.

➢avoid the inherent cost of creating a new object in the standard way (e.g.,

using the 'new' keyword) when it is prohibitively expensive for a given

application.

https://en.wikipedia.org/wiki/Prototype_pattern

All slides copyright Philip Japikse http://www.skimedic.com

STRUCTURAL

All slides copyright Philip Japikse http://www.skimedic.com

THE ADAPTER AND FAÇADE PATTERNS

➢The adapter pattern allows the interface of an existing class to be used as

another interface. It is often used to make existing classes work with others

without modifing code.

➢A facade is an object that provides a simplified interface to a larger body of

code, such as a class library. A facade can:

➢Make a software library easier to use, understand, and test, since the

facade has convenient methods for common tasks,

➢Reduce dependencies of outside code on the inner workings of a library

➢Wrap a poorly designed collection of APIs with a single well-designed API.

https://en.wikipedia.org/wiki/Facade_pattern

https://en.wikipedia.org/wiki/Adapter_pattern

All slides copyright Philip Japikse http://www.skimedic.com

THE DECORATOR PATTERN

➢The decorator pattern that allows behavior to be added to an individual

object, either statically or dynamically, without affecting the behavior of other

objects from the same class.

➢Provides an alternative to subclassing for extending functionality.

➢Supports the Single Responsibility Principle, as it allows functionality to be

divided between classes with unique areas of concern.

https://en.wikipedia.org/wiki/Decorator_pattern

All slides copyright Philip Japikse http://www.skimedic.com

RESOURCES

➢“Design Patterns: Elements of Reusable Object Oriented Design”

➢Eric Gamma, Richard Helm, Ralph Johnson, John Vlissides

➢“Head First Design Patterns”

➢www.dofactory.com

All slides copyright Philip Japikse http://www.skimedic.com

Patterns in C#

All slides copyright Philip Japikse http://www.skimedic.com

skimedic@outlook.com

www.skimedic.com/blog

www.twitter.com/skimedic

http://bit.ly/skimediclyndacourses

http://bit.ly/apressbooks

www.hallwayconversations.com

Contact Me

Questions?

https://github.com/skimedic/presentations

