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WHAT DOES IT MEAN TO “SECURE”?

➢More than just “logging in”

➢Authentication

➢Authorization

➢Cross Site Scripting (XSS)

➢User and access control management
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TRANSPORT LAYER SECURITY (TLS)

➢Provides communications security

➢SSL was proven to be easy to hack 

➢SSL is now prohibited by the Internet Engineering Task Force (IETF),

➢TLS aims to provide privacy and data integrity between two communicating 

computer applications
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TLS SECURE CONNECTION PROPERTIES (MUST HAVE 1+)

➢Symmetric cryptography encrypts the data transmitted

➢The identity of the communicating parties can be authenticated using public-

key cryptography.

➢Each message transmitted includes a message integrity check using 

a message authentication code to prevent undetected loss or alteration of 

the data during transmission.
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CROSS ORIGIN RESOURCE SHARING (CORS)

➢CORS defines a way in which a browser and server can interact to determine 

whether or not it is safe to allow request from a different domain.

➢It is more secure than simply allowing all cross-origin requests. 

➢It describes new HTTP headers which provide browsers and servers a way to 

request remote URLs only when they have permission.

➢Built in to all modern browsers

➢ Simple CORS

➢GET/POST, form encoded, no additional header

➢Sends Origin header in request, expects Access-Control-Allow-Origin in response
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DEALING WITH CORS

➢Most CORS sends “preflight” OPTIONS request specifying what is being 

requested (Verb, headers, cookies,etc)

➢Destination server decides who gets in

➢Have to populate appropriate headers in your $http service calls

➢Automatic with Angular $http service with right configuration

➢Configurable with ASP.NET Core Middleware
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CROSS SITE REQUEST FORGERY (CSRF/XSRF)

➢Attack where unauthorized commands are executed unwilling by user that 

the web application (browser) trusts.

➢Commonly involves the following:

➢Sites that rely on user’s identity

➢Exploits that sites trust

➢Tricks the browser into sending HTTP requests to target site

➢Typically target state change attacks since the response can’t be captured

➢Can be executed through Image tags, JS Ajax Requests, hidden forms, etc.
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CROSS SITE SCRIPTING (XSS)

➢XSS are attacks where malicious scripts are injected into trusted web sites. 

➢Can be used to bypass CORS rules or other access controls

➢Can access cookies, session tokens, or other sensitive information

➢Account for roughly 84% of security vulnerabilities documented by Symantec 

in 2007
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PROTOCOLS

➢OAuth2

➢Just about authorization

➢Issued access token after user is authenticated “somehow”

➢Includes provisions for user consent

➢OpenID Connect

➢Builds on OAuth2

➢Just about authentication

➢Issued id token after presenting valid credentials
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TERMINOLOGY

➢Client – application requesting access to a Resource

➢Role – Something you belong ot

➢Claim – something you have

➢Resource / Relying Party – a secured API/app that Client wants to call

➢Scope – a named resource that authorization is needed for

➢Identity Provider (IdP) / Security Token Service (STS) / SSO server / Authentication 
Server / Authorization Server

➢App that manages identities, authenticates users, returns ID and Access tokens for use 
by Client

➢IdentityServer, Azure AD, ADFS, Domain Controller, Auth0 server

➢JWT – “jawt” – token format used for OpenID Connect and OAuth2
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“MODERNIZING” WEB SECURITY
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“CLASSIC” WEB SECURITY
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MODERN WEB SECURITY
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➢aud – Audience (recipient)

➢Auth_time – When auth happened (nbf)

➢exp – Expiration time

➢nbf – Not Before (expiration)

➢scope – Identity Scope

➢sub – Subject (identity principal)

➢idp – Identity Provider

➢Iss – Issuer (URI)

➢Client_id – Identity Client

➢amr – Authentication method

OPENID CONNECT CLAIMS 
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IDENTITYSERVER OVERVIEW

➢IdentityServer is…

➢Open standards security protocols server

➢An OpenID Connect, WS-Federation, and SAML2p authentication server

➢And OAuth2 authorization server

➢Identity Provider (IdP)

➢Single Sign On (SSO) server
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AUTHENTICATION OPTIONS

➢Windows authentication

➢Basic authentication

➢Cookie-based authentication with host site

➢Token-based authentication (STS)
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IMPLEMENTING IDENTITY SERVER 4 IN ASP.NET CORE
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IDENTITY SERVER SUPPORTS MULTIPLE OPTIONS

➢Standalone in ASP.NET Core Web Application

➢Security Token Service for Multiple apps

➢With or without ASP.NET Identity
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IDENTITY SERVER WITH ASP.NET IDENTITY AND ENTITY FRAMEWORK

➢Add IdentityServer packages

➢IdentityServer4

➢IdentityServer4.AspNetIdentity

➢IdentityServer4.EntityFramework

➢Add IdentityServer to DI container in Startup/ConfigureServices

➢Replace UseAuthentication with UseIdentityServer in Startup/Configure
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SECURING A RESOURCE (ASP.NET CORE WEB SERVICE)

➢Add IdentityServer4.AccessTokenValidation package

➢Update AddMvcCore to include AddAuthorization in 

Startup/ConfigureServices

➢Add Authentication and IdentityServer Authentication to DI container in 

Startup/Configure Services

➢[If necessary]Add Cors to DI container in Startup/Configure Services 

➢Add UseAuthentication ot Startup/Configure

➢Add Authorize attribute to protected resources
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NON-WEB ACCESS ATTEMPT SCENARIO WORKFLOW

➢ASP.NET Core API is secured using Identity Server

➢This builds on ASP.NET Authentication/Authorization

➢Console (non-web) client attempts access to the API

➢API redirects to IdentityServer using information from the client

➢IdentityServer validates/rejects information from client

➢If valid, API allows access

➢Communication between Client, Resources, and IS is all done back channel
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GRANTING CLIENTS ACCESS TO SECURED RESOURCE

➢Include IdentityModel package

➢Clients are granted scopes and grant types

➢Handshake is accomplished with public/private key secrets

➢Secured Resource Name must be in the allowed scopes

➢Client contacts Identity Server for a token

➢If authenticated, token is granted

➢Client contacts secured resource

➢If grants and scopes match, client is granted access
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ASP.NET CORE ACCESS ATTEMPT SCENARIO WORKFLOW

➢ASP.NET Core API is secured using Identity Server

➢This builds on ASP.NET Authentication/Authorization

➢ASP.NET Core Web App attempts access to the API

➢API redirects to IdentityServer using information from the client

➢IdentityServer validates/rejects information from client

➢If valid, API allows access

➢If Cross Origin requests, CORS must be enabled
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GRANTING ASP.NET CORE CLIENTS ACCESS TO SECURED RESOURCE

➢Clients are granted scopes and grant types

➢Handshake is accomplished with public/private key secrets

➢Secured Resource Name must be in the allowed scopes

➢Client contacts Identity Server for a token

➢If authenticated, token is granted

➢Client contacts secured resource

➢If grants and scopes match, client is granted access
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CONFIGURING ASP.NET CORE CLIENT

➢Include IdentityModel, ASP.NETCore OpenIdConnect and Cookies packages

➢Allow for passthrough of sub (user) and idp (sts) claims unmolested

➢Add Cookie Authentication and OpenIdConnect in Startup/ConfigureServices

➢Set Authority, ClientId, ClientSecret, and Scopes

➢Add Use Authentication in Startup/Configure
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JAVASCRIPT CLIENTS
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CONFIGURING JAVASCRIPT CLIENTS FOR RESOURCE ACCESS

➢Download and reference oidc-client.js

➢Using bower or LibraryManager

➢Set configuration

➢Create UserManager

➢For ajax calls, set Authorization and access token
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