
All slides copyright Philip Japikse http://www.skimedic.com

Philip Japikse (@skimedic)

skimedic@outlook.com

CTO, Author, Teacher

Microsoft MVP, ASPInsider, PST, PSM II, PSD

UNIT TESTING FOR MERE MORTALS

All slides copyright Philip Japikse http://www.skimedic.com

➢CTO/Chief Architect, Pintas & Mullins

➢Author: Apress.com (http://bit.ly/apressbooks)

➢Professional Scrum Trainer (PSF, PSD)

➢Speaker: http://www.skimedic.com/blog/page/Abstracts.aspx

➢Microsoft MVP, ASPInsider, PST, PSM II, PSD

➢Founder, Agile Conferences, Inc.

➢http://www.cincydeliver.org

➢President, Cincinnati .NET User’s Group

Phil.About()

All slides copyright Philip Japikse http://www.skimedic.com

UNIT TESTING

All slides copyright Philip Japikse http://www.skimedic.com

“The main thing that distinguishes legacy code from non-

legacy code is tests, or rather a lack of tests.”

– Michael Feathers

All slides copyright Philip Japikse http://www.skimedic.com

UNIT TESTING MOTIVATION

➢Cost of correcting a defect (by phase)1:
➢Requirements = $139

➢Design = $455

➢Coding = $977

➢Unit testing targets coding -> deployment and maintenance

➢System Testing = $7,136

➢Maintenance = $14,102
1B.Boehm and V. Basili, “Software Defect Reduction Top 10 List”, IEEE Computer, January 2001

All slides copyright Philip Japikse http://www.skimedic.com

WHY REALLY?

➢The Team

➢Confidence

➢Courage

➢Cadence

All slides copyright Philip Japikse http://www.skimedic.com

IT’S *NOT* ABOUT TESTING

➢Tests are used to drive design of the API

➢Leading to smaller, cleaner code base

➢Confirm success of the API with a rapid feedback loop

➢Less Code

➢Only develop enough to meet the requirements

➢Cleaner Design

➢Code is written in small increments in direct response to need

All slides copyright Philip Japikse http://www.skimedic.com

T/BDD BENEFITS

➢Higher Code Coverage

➢Once code is developed, often there isn’t time in the schedule to go back

and improve coverage

➢Measurable Impact of Future Changes

➢How many tests break with a change?

All slides copyright Philip Japikse http://www.skimedic.com

DEFINITIONS

All slides copyright Philip Japikse http://www.skimedic.com

UNIT OF WORK/UNIT TESTS

➢Unit of Work

➢Smallest testable part of an application.

➢Unit Test

➢Code used to validate units of work

All slides copyright Philip Japikse http://www.skimedic.com

UNIT TEST “CODE” OF HONOR

➢Be Independent of all other unit tests

➢Return the System Under Test to it’s original state

➢Note: Integration tests should follow these rules as well

All slides copyright Philip Japikse http://www.skimedic.com

TYPES OF UNIT TESTS

➢State Testing

➢Easiest tests to write and execute

➢Asserted with value-based semantics

➢Behavior-based Testing

➢Verification of Behavior of SUT

All slides copyright Philip Japikse http://www.skimedic.com

COVERAGE

➢Code Coverage

➢Measures lines of code executed by the Unit Tests

➢Use Case Coverage

➢Test edge cases, exception handling

All slides copyright Philip Japikse http://www.skimedic.com

FAKES, STUBS, AND MOCKS

➢Fakes have working implementations

➢Hardcoded, not suitable for production

➢Stubs provide canned answers

➢Mocks pre-programmed with expectations

➢Create a specification

➢Record behavior

All slides copyright Philip Japikse http://www.skimedic.com

WHY MOCK OBJECTS?

➢Test Isolation

➢Conditions that are difficult to reproduce

➢Objects that are

➢Slow to execute or setup

➢Not yet coded

➢Expensive to call (e.g. external services)

➢Objects that introduce noise that could occlude test results

All slides copyright Philip Japikse http://www.skimedic.com

TDD VS BDD

➢Test Driven Development

➢Test blocks of code

➢Behavior Driven Development

➢Test Behaviors

All slides copyright Philip Japikse http://www.skimedic.com

SUPPORTING PROCESSES

All slides copyright Philip Japikse http://www.skimedic.com

SOURCE CODE CONTROL

➢Commit early and often

➢EVERY TIME you are green!

➢Update after every check in

➢Run tests on each commit (CI)

All slides copyright Philip Japikse http://www.skimedic.com

AUTOMATED BUILD PROCESS

➢Run all unit tests with every build

➢Builds should be run at least twice a day (striving towards Continuous

Integration)

➢Failed Test = Failed Build = Doughnuts

➢Integration tests should be run at least once a day

All slides copyright Philip Japikse http://www.skimedic.com

HANDLING SQUIRRELS

➢Computers can multi-thread, people cannot

➢Keep list of To-Dos

➢As ideas come up, write them down

➢Tackle them in order of confidence

➢Finish what you start!

➢Don’t context switch

All slides copyright Philip Japikse http://www.skimedic.com

T/BDD

All slides copyright Philip Japikse http://www.skimedic.com

TEST STRUCTURE

➢Arrange

➢Create all dependencies (mocks)

➢Instantiate the System Under Test

➢Act

➢Execute the method to be tested

➢Highlander Principle

➢Assert

➢Verify Results

All slides copyright Philip Japikse http://www.skimedic.com

TEST DRIVEN DEVELOPMENT/DESIGN (TDD)

http://www.babble.com/CS/blogs/strollerderby/legos.jpg

All slides copyright Philip Japikse http://www.skimedic.com

BEHAVIOR DRIVEN DEVELOPMENT

All slides copyright Philip Japikse http://www.skimedic.com

THE T/BDD MANTRA

➢Red – write a breaking test (failed build = broken test)

➢Green – write just enough code to have the test pass

➢Refactor – eliminate any duplicate code (or anything else that isn’t self-
documenting or is overly complex)

All slides copyright Philip Japikse http://www.skimedic.com

RED

➢Write the test

➢Use BDD naming even if in TDD paradigm

➢“Should_Add_Two_Integers”

➢Add assertion(s)

➢Write just enough code to enable the build

➢Failed build is a failed test

All slides copyright Philip Japikse http://www.skimedic.com

GREEN

➢Write just enough code to pass the test

➢Expand test one Use Case at a time

➢Rerun all tests - if any of the Use Cases fail the test, continue to flush out

the target code

➢Refactor target code AND test code along the way

➢Continue until complete Use Case Coverage accomplished

All slides copyright Philip Japikse http://www.skimedic.com

REFACTOR

➢Remove:

➢Hardcoded values

➢Duplicate Code (Keep DRY)

➢Any code that is not self documenting or unclear

➢This also applies to the tests

➢Or does it?

➢Moist is ok

All slides copyright Philip Japikse http://www.skimedic.com

BARRIERS TO ENTRY

All slides copyright Philip Japikse http://www.skimedic.com

COMMON FRICTION POINTS

➢It’s Hard.

➢<Fill in the blank> doesn’t want me writing “twice as much code”.

➢I don’t have time for it.

➢My code doesn’t have bugs.

➢That’s QA’s job.

➢Any others?

All slides copyright Philip Japikse http://www.skimedic.com

SUMMARY

➢Where does T/BDD fit?

➢Anywhere you are writing code

➢Where does TED fit?

➢Generated Code*

➢New/Updated Frameworks

➢FTW:

➢Defect reduction (“elimination”)

➢QA team shifts to proactive mode

➢Increased Agility and faster Time To Market

All slides copyright Philip Japikse http://www.skimedic.com

TDD/BDD/Mocking

All slides copyright Philip Japikse http://www.skimedic.com

skimedic@outlook.com

www.skimedic.com/blog

www.twitter.com/skimedic

http://bit.ly/apressbooks

Contact Me

Questions?Questions?Questions?

https://github.com/skimedic/presentations

