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UNIT TESTING
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“The main thing that distinguishes legacy code from non-
legacy code is tests, or rather a lack of tests.”
— Michael Feathers
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UNIT TESTING MOTIVATION
> Cost of correcting a defect (by phase)':
> quirems s = 0
>De xnd 5455
»>Cod =$977

» attes. fargetscos J->C ‘oymentans ainte. ce
v oystemTec =92 136

> Maintenance = $14,102

'B.Boehm and V. Basili, “Software Defect Reduction Top 10 List”, IEEE Computer, January 2001
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WHY REALLY?
» The Team
» Confidence

»(Courage
»Cadence

BISSE——
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IT'S *NOT* ABOUT TESTING
> Tests are used to drive design of the API

»Leading to smaller, cleaner code base

» Confirm success of the AP| with a rapid feedback loop
»Less Code

» Only develop enough to meet the requirements
»Cleaner Design

» Code is written in small increments in direct response to need
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T/BDD BENEFITS
»Higher Code Coverage

»0nce code is developed, often there isn't time in the schedule to go back
and improve coverage

»Measurable Impact of Future Changes

»How many tests break with a change?

R —
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DEFINITIONS
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UNIT OF WORK/UNIT TESTS
> Unit of Work

»Smallest testable part of an application.
»Unit Test

» Code used to validate units of work

B ——
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UNIT TEST “CODE” OF HONOR

»Be Independent of all other unit tests

»Return the System Under Test to it's original state
»Note: Integration tests should follow these rules as well

R —
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TYPES OF UNIT TESTS
» State Testing

» Easiest tests to write and execute
» Asserted with value-based semantics
»Behavior-based Testing

» Verification of Behavior of SUT

R —
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COVERAGE
»Code Coverage

»>Measures lines of code executed by the Unit Tests
»Use Case Coverage

» Test edge cases, exception handling

——— e
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FAKES, STUBS, AND MOCKS
»Fakes have working implementations

»Hardcoded, not suitable for production
» Stubs provide canned answers

»Mocks pre-programmed with expectations

» Create a specification
»Record behavior

R —
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WHY MOCK OBJECTS?

» Test Isolation

» Conditions that are difficult to reproduce
»Objects that are

» Slow to execute or setup
»Not yet coded
»Expensive to call (e.g. external services)
» Objects that introduce noise that could occlude test results

R —
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TDD VS BDD
» Test Driven Development

> Test blocks of code
»Behavior Driven Development

» Test Behaviors

A—
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SUPPORTING PROCESSES
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SOURCE CODE CONTROL
»Commit early and often

»EVERY TIME you are green!
»Update after every check in
»Run tests on each commit (CI)

——— e
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AUTOMATED BUILD PROCESS
»Run all unit tests with every build

»Builds should be run at least twice a day (striving towards Continuous
Integration)

»Failed Test = Failed Build = Doughnuts
»Integration tests should be run at least once a day

B ———
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HANDLING SQUIRRELS
»Computers can multi-thread, people cannot
> Keep list of To-Dos

»As ideas come up, write them down
» Tackle them in order of confidence
» Finish what you start!

»Don’t context switch

R —
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T/BDD
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TEST STRUCTURE
» Arrange

»Create all dependencies (mocks)

»Instantiate the System Under Test
» Act

» Execute the method to be tested
»Highlander Principle
» Assert

»\Verify Results

R —
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TEST DRIVEN DEVELOPMENT/DESIGN (TDD)
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BEHAVIOR DRIVEN DEVELOPMENT
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THE T/BDD MANTRA
» o0 —write a breaking test (failed build = broken test)

> — write just enough code to have the test pass

»Refactor — eliminate any duplicate code (or anything else that isn't self-
documenting or is overly complex)

R —
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RED
» Write the test

»Use BDD naming even if in TDD paradigm
»"“Should_Add_Two_Integers”

» Add assertion(s)

» Write just enough code to enable the build
»Failed build is a failed test

R —
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GREEN

» Write just enough code to pass the test
»Expand test one Use Case at a time

»Rerun all tests - if any of the Use Cases fail the test, continue to flush out
the target code

» Refactor target code AND test code along the way
» Continue until complete Use Case Coverage accomplished
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REFACTOR
» Remove:

»Hardcoded values

»Duplicate Code (Keep DRY)

» Any code that is not self documenting or unclear
» This also applies to the tests

» Or does it?
> Moist is ok

R —
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BARRIERS TO ENTRY
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COMMON FRICTION POINTS

»It's Hard.

»<Fill in the blank> doesn’t want me writing “twice as much code”.
»| don’t have time for it.

»My code doesn't have bugs.

»That's QA's job.

> Any others?

R —
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SUMMARY
»Where does T/BDD fit?

»Anywhere you are writing code
»Where does TED fit?

» Generated Code*

»New/Updated Frameworks
»FTW:

» Defect reduction (“elimination”)
» QA team shifts to proactive mode
»Increased Agility and faster Time To Market
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DEMO

NEINO

TDD/BDD/Mocking
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Contact Me 2
skimedic@outlook.com

www.skimedic.com/blog
www.twitter.com/skimedic

Questions? "

http://bit.ly/apressbooks

Thank You!
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